

LSAAT Meeting AGENDA

Thursday, June 13, 2024, Meeting Time: 8:00am-5:00pm

	Dr. Aaron Birt	(Welcome Remarks) 0800-0815	
	Presenter	Presentation Topic	Time
	Session 1: Moderator: Dr. Aaron Birt, Solvus Global		
1.	Dr. Kevin Genson, NAVSEA	Navy Additive Manufacturing: Revitalizing the Defense Industrial Base	0815-0830
2.	Markus Brotsack, Impact Innovations	Latest Developments in High-Pressure CS Equipment	0830-0850
3.	Steven Camilleri, SPEE3D	Performance Measurements of 'Thunderbird' CS Additive Device	0850-0910
4.	Shannon Minett, Titomic	TKF: Precise Motion Control Integrated at the Largest Scale	0910-0930
Ex	hibit Area	BREAK AND NETWORKING	0930-1000
Session 2: Moderator: Ken Ross, Pacific Northwest National Laboratory			
5.	Marius Ellingsen, VRC Metal Systems	Large Scale Additive Mfg. Applications Using CSAM and Wire-DED	1000-1020
6.	David Garcia, PNNL	Challenges in Scalability of Additive Friction Surfacing of Steel	1020-1040
7.	Dr. Richard Billo, Missouri S&T	Small Batch Production of Custom WAAM Wire Alloys	1040-1100
8.	Dr. Dennis Harwig, EWI	Robotic Convergent Manufacturing of UHSS and SS Components	1100-1120
9.	Michael Klecka, RTRC	Large Format AM for Functionally Graded & Tailored Materials	1120-1150
Ех	hibit Area	LUNCH	1150-1250
	Session 3: Moderator: Bruno Zamorano, Boeing		
10). Tyler Dolmetsch, FIU	Unveiling Weld Bead Dynamics: Imaging of Wire Arc DED Process	1250-1310
11	. Kumar Kandasamy, Enabled Eng.	<u>A Flexible & Adaptable Additive Manufacturing: Solidstir®-AM</u>	1310-1330
12	. Shawn Huff & Kelly Smith, ES3	ES3 Advanced Manufacturing for DOD Development and Sustainment	1330-1350
13	. Michael Eff, EWI	Base Feasibility on AFSD of Steel	1350-1410
14	. Jeremy Lebowitz, Jensen Hughes	<u> Titanium Wire Arc AM – Near Miss Lessons Learned</u>	1410-1430
15	. Brian Jordon, Baylor University	Computational & Experimental Round Feedstock AFSD Projects	1430-1450
Ex	hibit Area	BREAK AND NETWORKING	1450-1520
	Session 4: Moderator: Howie Marotto, EWI		
16	. Alex Michelson, Solvus Global	Implementing Large Scale AM to Resolve Modern Mfg Challenges	1520-1540
17	. Mark Douglass, Lincoln Electric	Gas Metal Arc DED — Production Use Cases	1540-1600
18	3. Zachary Gray, Siemens	Leveraging Big Data for Closed Loop Control in DED	1600-1620
19). Jeremy Schreiber, HAMR	Large Format Applications for Cold Spray Additive Manufacturing	1620-1640
Dr	. Aaron Birt	Wrap-Up & LSAAT 2024 Poster Awards	1640-1700
RE	CEPTION	Baystate Brewery & Tap Room	1700-2000

THANK YOU TO OUR PLATINUM SPONSORS

THANK YOU TO OUR HOSTS, CONFERENCE STAFF MEMBERS, AND SPONSORS

Executive Director, Dr. Victor Kenneth Champagne, Jr. Email: vchampagnejr@gmail.com, Mobile: (774) 334-0842

Associate Executive Director, Dr. Aaron Birt

Solvus Global, 104 Prescott Street, Worcester, MA, 01605 Email: <u>aaron.birt@solvusglobal.com</u>, Mobile: (717) 602-5158

THANK YOU TO OUR GOLD SPONSORS

Large Format Applications for Cold Spray Additive Manufacturing

Speaker: Jeremy Schreiber

Organization: HAMR

The low-cost, high build rate, near-net-shape capabilities of cold spray additive manufacturing (CSAM) make this an attractive technique for large format components. This presentation covers experience in design, manufacturing, and testing of CSAM components for sea and land-based large format applications. Emphasis will be placed on the roles of design for additive manufacturing on printability, as well as integration of process monitoring and predictive modeling for qualification pathways. The talk will finish with extension of these concepts to future components and broader maritime, air, and space applications for CSAM.

Unveiling Weld Bead Dynamics: Imaging of Wire Arc DED Process

Speaker: Tyler Dolmetsch

Organization: Florida International University (FIU)

Understanding the intricate dynamics of weld bead deposition and evolution in the Wire Arc Direct Energy Deposition (Wire Arc DED) process is crucial for enhancing process efficiency and product quality. In this presentation, we explore the utilization of advanced imaging techniques, high-speed and thermal cameras, to record the Wire Arc DED process in real-time. By synchronously capturing both high-speed and thermal data, we aim to unravel the fundamental mechanisms governing the deposition and evolution of weld beads over time. Through comprehensive analysis of the recorded data, we seek to elucidate the interplay between heat transfer, material deposition, and morphological changes occurring during the welding process. Insights gleaned from this study hold significant promise for optimizing process parameters, mitigating defects through feedback control, and advancing the capabilities of Wire Arc DED technology for diverse applications.

Challenges in Scalability of Additive Friction Surfacing of Steel

Speaker: David Garcia

Organization: Pacific Northwest National Laboratory (PNNL)

Friction stir-based additive technologies provide a direct pathway to manufacture large-scale components with wrought materials properties. The refined grain and refined secondary phase microstructure provides many benefits which have been readily demonstrated at the research scale. Beyond the engineering and equipment challenges, an understanding of the scientific principles in scalability must be developed to achieve commercial success. This work investigates the challenges in additive friction surfacing of a navy-grade steel alloy with a focus on increasing deposition rates. By systematically studying process inputs (traverse velocity, rod diameter, and tilt angle) and measuring the processing history response (forces, torques, and material flow) a substantial increase in deposition rate and quality is achieved.

ES3 Advanced Manufacturing for DOD Development and Sustainment

Speaker: Shawn Huff & Kelly Smith

Organization: ES3

ES3 is advancing both metal and composite additive manufacturing processes targeted to sustain current aging DoD weapons systems while enabling game changing design and manufacturing possibilities. ES3 is driving AFSD development with the goal to enable rapid forging and casting replacement. As the sole landing gear parts supplier for USAF organically sustained aircraft ES3 can see the seismic change AFSD without graphite will bring to high value low rate production. AM composite manufacturing for DoD structures can only be achieved with proven processes, known material properties, and analysis tools that can predict design success. ES3 is making this reality today.

Implementing Large Scale AM to Resolve Modern Mfg Challenges

Speaker: Alex Michelson

Organization: Solvus Global

The erosion of domestic supply for large metal castings and forgings poses a significant risk to both defense readiness and industry growth. Additive manufacturing presents a critical capability to keep the future supply of large components available. To be a successful alternative to centuries old castings and forgings, additive manufacturing methods need to demonstrate robustness, measurable quality and flexibility to meet the needs component designers. Mammoth Metalworks exists to change the way large metal parts are manufactured. Through implementing large scale additive manufacturing methods, Solvus Global and Mammoth Metalworks have demonstrated the solution for extensible, qualified additive manufacturing capabilities.

A Flexible & Adaptable Additive Manufacturing: Solidstir®-AM

Speaker: Kumar Kandasamy

Organization: Enabled Engineering

SolidStir®-AM is a novel approach to solving most of the process complication associated with current solid-phase deposition technologies. In SolidStir®-AM, feedstock size is independent of track width, feedstock plasticization is decoupled from deposition. These inherent technical advantages allow the SolidStir-AM to offer better deposition efficiency, low axial force on the substrate and narrower track width to improve feature definition on the deposited components. Because of which the process is adaptable on the conventional machine tools and flexible with feedstocks while requiring no specialized spindle design. This wrought metal deposition technology has potential for widening the application range and commercial viability.

Leveraging Big Data for Closed Loop Control in DED

Speaker: Zachary Gray

Organization: Siemens Industry Inc., USA

The integration of novel sensor systems and edge-based data-gathering strategies in Laser Metal Deposition (LMD) enhances process stability and enables smart production by collecting and processing data from various sensors. Especially, the monitoring of the distance between the nozzle and the part with an OCT-sensor has been proven to be promising for data-based, real-time process control of the LMD process while producing complex structures.

Titanium Wire Arc AM – Near Miss Lessons Learned

Speaker: Jeremy Lebowitz & Patrick Grace

Organization: Jensen Hughes & Solvus Global

Novel technologies have the potential to introduce novel hazards. This presentation highlights the WAAM process, and how Solvus Global built upon near miss incidents to improve process safety and reduce fire/explosion hazards by implementing a dust hazard analysis.